AWS Glue – All you need to Simplify ETL process

#########################################

### IMPORT LIBRARIES AND SET VARIABLES

#########################################

#Import python modules

from datetime import datetime

#Import pyspark modules

from pyspark.context import SparkContext

import pyspark.sql.functions as f

#Import glue modules

from awsglue.utils import getResolvedOptions

from awsglue.context import GlueContext

from awsglue.dynamicframe import DynamicFrame

from awsglue.job import Job

#Initialize contexts and session

spark_context = SparkContext.getOrCreate()

glue_context = GlueContext(spark_context)

session = glue_context.spark_session

#Parameters

glue_db = "glue-demo-edureka-db"

glue_tbl = "read"

s3_write_path = "s3://glue-demo-bucket-edureka/write"

#########################################

### EXTRACT (READ DATA)

#########################################

#Log starting time

dt_start = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

print("Start time:", dt_start)

#Read movie data to Glue dynamic frame

dynamic_frame_read = glue_context.create_dynamic_frame.from_catalog(database = glue_db, table_name = glue_tbl)

#Convert dynamic frame to data frame to use standard pyspark functions

data_frame = dynamic_frame_read.toDF()

#########################################

### TRANSFORM (MODIFY DATA)

#########################################

#Create a decade column from year

decade_col = f.floor(data_frame["year"]/10)*10

data_frame = data_frame.withColumn("decade", decade_col)

#Group by decade: Count movies, get average rating

data_frame_aggregated = data_frame.groupby("decade").agg(

f.count(f.col("movie_title")).alias('movie_count'),

f.mean(f.col("rating")).alias('rating_mean'),

)

#Sort by the number of movies per the decade

data_frame_aggregated = data_frame_aggregated.orderBy(f.desc("movie_count"))

#Print result table

#Note: Show function is an action. Actions force the execution of the data frame plan.

#With big data the slowdown would be significant without cacching.

data_frame_aggregated.show(10)

#########################################

### LOAD (WRITE DATA)

#########################################

#Create just 1 partition, because there is so little data

data_frame_aggregated = data_frame_aggregated.repartition(1)

#Convert back to dynamic frame

dynamic_frame_write = DynamicFrame.fromDF(data_frame_aggregated, glue_context, "dynamic_frame_write")

#Write data back to S3

glue_context.write_dynamic_frame.from_options(

frame = dynamic_frame_write,

connection_type = "s3",

connection_options = {

"path": s3_write_path,

#Here you could create S3 prefixes according to a values in specified columns

#"partitionKeys": ["decade"]

},

format = "csv"

)

#Log end time

dt_end = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

print("Start time:", dt_end)

Leave a Reply

Your email address will not be published. Required fields are marked *